Sunday, September 7, 2008

GSM



GSM
SIVAMANOJ.S
DEPARTMENT OF INFORMATION TECHNOLOGY
GOVERNMENT COLLEGE OF TECHNOLOGY
ANNAUNIVERSITY,COIMBATORE-13

ABSTRACTION:
GSM (Global System for Mobile communications: originally from Groupe Spécial Mobile) is the most popular standard for
mobile phones in the world. Its promoter, the GSM Association, estimates that 82% of the global mobile market uses the standard.[1] GSM is used by over 3 billion people across more than 212 countries and territories.[2][3] Its ubiquity makes international roaming very common between mobile phone operators, enabling subscribers to use their phones in many parts of the world. GSM differs from its predecessors in that both signalling and speech channels are digital, and thus is considered a second generation (2G) mobile phone system. This has also meant that data communication was easy to build into the system.

INTRODUCTION:
The ubiquity of the GSM standard has been an advantage to both consumers (who benefit from the ability to roam and switch carriers without switching phones) and also to network operators (who can choose equipment from any of the many vendors implementing GSM
[4]). GSM also pioneered a low-cost, to the network carrier, alternative to voice calls, the Short message service (SMS, also called "text messaging"), which is now supported on other mobile standards as well. Another advantage is that the standard includes one worldwide Emergency telephone number, 112[5]. This makes it easier for international travellers to connect to emergency services without knowing the local emergency number.
Newer versions of the standard were backward-compatible with the original GSM phones. For example,
Release '97 of the standard added packet data capabilities, by means of General Packet Radio Service (GPRS). Release '99 introduced higher speed data transmission using Enhanced Data Rates for GSM Evolution (EDGE).
History:
In 1982, the
European Conference of Postal and Telecommunications Administrations (CEPT) created the Groupe Spécial Mobile (GSM) to develop a standard for a mobile telephone system that could be used across Europe.[6] In 1987, a memorandum of understanding was signed by 13 countries to develop a common cellular telephone system across Europe.[7][8]
In 1989, GSM responsibility was transferred to the European Telecommunications Standards Institute (ETSI) and phase I of the GSM specifications were published in 1990. The first GSM network was launched in 1991 by Radiolinja in Finland with joint technical infrastructure maintenance from Ericsson.[9] By the end of 1993, over a million subscribers were using GSM phone networks being operated by 70 carriers across 48 countries.[10]
Technical details:
GSM is a
cellular network, which means that mobile phones connect to it by searching for cells in the immediate vicinity. GSM networks operate in four different frequency ranges. Most GSM networks operate in the 900 MHz or 1800 MHz bands. Some countries in the Americas (including Canada and the United States) use the 850 MHz and 1900 MHz bands because the 900 and 1800 MHz frequency bands were already allocated.
The rarer 400 and 450 MHz frequency bands are assigned in some countries, notably Scandinavia, where these frequencies were previously used for first-generation systems.
GSM-900 uses 890–915 MHz to send information from the
mobile station to the base station (uplink) and 935–960 MHz for the other direction (downlink), providing 124 RF channels (channel numbers 1 to 124) spaced at 200 kHz. Duplex spacing of 45 MHz is used. In some countries the GSM-900 band has been extended to cover a larger frequency range. This 'extended GSM', E-GSM, uses 880–915 MHz (uplink) and 925–960 MHz (downlink), adding 50 channels (channel numbers 975 to 1023 and 0) to the original GSM-900 band. Time division multiplexing is used to allow eight full-rate or sixteen half-rate speech channels per radio frequency channel. There are eight radio timeslots (giving eight burst periods) grouped into what is called a TDMA frame. Half rate channels use alternate frames in the same timeslot. The channel data rate is 270.833 kbit/s, and the frame duration is 4.615 ms.
The transmission power in the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in GSM1800/1900.
GSM has used a variety of voice
codecs to squeeze 3.1 kHz audio into between 5.6 and 13 kbit/s. Originally, two codecs, named after the types of data channel they were allocated, were used, called Half Rate (5.6 kbit/s) and Full Rate (13 kbit/s). These used a system based upon linear predictive coding (LPC). In addition to being efficient with bitrates, these codecs also made it easier to identify more important parts of the audio, allowing the air interface layer to prioritize and better protect these parts of the signal.
GSM was further enhanced in 1997
[11] with the Enhanced Full Rate (EFR) codec, a 12.2 kbit/s codec that uses a full rate channel. Finally, with the development of UMTS, EFR was refactored into a variable-rate codec called AMR-Narrowband, which is high quality and robust against interference when used on full rate channels, and less robust but still relatively high quality when used in good radio conditions on half-rate channels.
There are five different cell sizes in a GSM network—
macro, micro, pico, femto and umbrella cells. The coverage area of each cell varies according to the implementation environment. Macro cells can be regarded as cells where the base station antenna is installed on a mast or a building above average roof top level. Micro cells are cells whose antenna height is under average roof top level; they are typically used in urban areas. Picocells are small cells whose coverage diameter is a few dozen meters; they are mainly used indoors. Femtocells are cells designed for use in residential or small business environments and connect to the service provider’s network via a broadband internet connection. Umbrella cells are used to cover shadowed regions of smaller cells and fill in gaps in coverage between those cells.
Cell horizontal radius varies depending on antenna height, antenna gain and propagation conditions from a couple of hundred meters to several tens of kilometres. The longest distance the GSM specification supports in practical use is 35 kilometres (22 mi). There are also several implementations of the concept of an extended cell, where the cell radius could be double or even more, depending on the antenna system, the type of terrain and the
timing advance.
Indoor coverage is also supported by GSM and may be achieved by using an indoor picocell base station, or an
indoor repeater with distributed indoor antennas fed through power splitters, to deliver the radio signals from an antenna outdoors to the separate indoor distributed antenna system. These are typically deployed when a lot of call capacity is needed indoors, for example in shopping centers or airports. However, this is not a prerequisite, since indoor coverage is also provided by in-building penetration of the radio signals from nearby cells.
The
modulation used in GSM is Gaussian minimum-shift keying (GMSK), a kind of continuous-phase frequency shift keying. In GMSK, the signal to be modulated onto the carrier is first smoothed with a Gaussian low-pass filter prior to being fed to a frequency modulator, which greatly reduces the interference to neighboring channels (adjacent channel interference).
Network structure:
The structure of a GSM network
The network behind the GSM system seen by the customer is large and complicated in order to provide all of the services which are required. It is divided into a number of sections and these are each covered in separate articles.
the
Base Station Subsystem (the base stations and their controllers).
the
Network and Switching Subsystem (the part of the network most similar to a fixed network). This is sometimes also just called the core network.
the
GPRS Core Network (the optional part which allows packet based Internet connections).
all of the elements in the system combine to produce many
GSM services such as voice calls and SMS.
Subscriber Identity Module:
GSM transmitter
One of the key features of GSM is the
Subscriber Identity Module (SIM), commonly known as a SIM card. The SIM is a detachable smart card containing the user's subscription information and phone book. This allows the user to retain his or her information after switching handsets. Alternatively, the user can also change operators while retaining the handset simply by changing the SIM. Some operators will block this by allowing the phone to use only a single SIM, or only a SIM issued by them; this practice is known as SIM locking, and is illegal in some countries.
In
Australia, North America and Europe many operators lock the mobiles they sell. This is done because the price of the mobile phone is typically subsidised with revenue from subscriptions, and operators want to try to avoid subsidising competitor's mobiles. A subscriber can usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or make use of ample software and websites available on the Internet to unlock the handset themselves. While most web sites offer the unlocking for a fee, some do it for free. The locking applies to the handset, identified by its International Mobile Equipment Identity (IMEI) number, not to the account (which is identified by the SIM card).
In some countries such as Belgium, Costa Rica, India, Indonesia, Pakistan, and Malaysia, all phones are sold unlocked. However, in Belgium, it is unlawful for operators there to offer any form of subsidy on the phone's price. This was also the case in Finland until
April 1, 2006, when selling subsidized combinations of handsets and accounts became legal, though operators have to unlock phones free of charge after a certain period (at most 24 months).
GSM security
GSM was designed with a moderate level of security. The system was designed to authenticate the subscriber using a
pre-shared key and challenge-response. Communications between the subscriber and the base station can be encrypted. The development of UMTS introduces an optional USIM, that uses a longer authentication key to give greater security, as well as mutually authenticating the network and the user - whereas GSM only authenticated the user to the network (and not vice versa). The security model therefore offers confidentiality and authentication, but limited authorization capabilities, and no non-repudiation. GSM uses several cryptographic algorithms for security. The A5/1 and A5/2 stream ciphers are used for ensuring over-the-air voice privacy. A5/1 was developed first and is a stronger algorithm used within Europe and the United States; A5/2 is weaker and used in other countries. Serious weaknesses have been found in both algorithms: it is possible to break A5/2 in real-time with a ciphertext-only attack, and in February 2008, Pico Computing, Inc revealed its ability and plans to commercialize FPGAs that allow A5/1 to be broken with a rainbow table attack [1]. The system supports multiple algorithms so operators may replace that cipher with a stronger one.
Standards information:
GSM 02.07
GSM 07.07 - Main AT commands
GSM 07.07 "AT command set for GSM Mobile Equipment (ME)" describes the Main AT commands to communicate via a serial interface with the GSM subsystem of the phone.
[14]
Note that the descendant of this specification is 3GPP TS 27.007 - AT command set for User Equipment (UE) [15].

SUBSCRIBER IDENTITY MODULE



SUBSCRIBER IDENTITY MODULE
SAMINATHAN.P
REG NO 0718143
DEPARTMENT OF INFORMATION TECHNOLOGY
GOVERNMENT COLLEGE OF TECHNOLOGY
ANNA UNIVERSITY, COIMBATORE-13
Abstact
A Subscriber Identity Module (SIM) is part of a removable
smart card ICC (Integrated Circuit Card), also known as SIM Cards, for mobile, telephony devices (such as computers) and mobile phones.
Introduction
SIM cards securely store the
service-subscriber key (IMSI) used to identify a subscriber. The SIM card allows users to change phones by simply removing the SIM card from one mobile phone and inserting it into another mobile phone or broadband telephony device.SIM cards are available in two standard sizes. The first is the size of a credit card (85.60 mm × 53.98 mm x 0.76 mm). The newer, more popular miniature-version has a width of 25 mm, a height of 15 mm, and a thickness of 0.76 mm.
The first SIM Card was made in 1991, with Munich smart card maker Giesecke & Devrient selling the first 300 SIM cards to Finnish wireless network operator
Elisa Oyj (formerly Radiolinja).W-SIM is a SIM card which also integrates core cellular technology into the card itself.
Usage in mobile phone standards
The use of SIM cards is mandatory in
GSM devices. The equivalent of a SIM in UMTS is called the Universal Subscriber Identity Module (USIM), whereas the Removable User Identity Module (RUIM) is more popular in CDMA-based devices. Many CDMA-based standards do not include any such card, and the service is bound to a unique identifier contained in the handset itself.The Satellite phone networks Iridium, Thuraya and Inmarsat's
BGAN also use SIM cards. Sometimes these SIM cards work in regular GSM phones and also allow GSM customers to roam in satellite networks by using their own SIM card in a satellite phone.
The SIM card introduced a new and significant business opportunity of mobile telecoms operator/carrier business of the MVNO (Mobile Virtual Network Operator) which does not own or operate a cellular telecoms network, but which leases capacity from one of the network operators, and only provides a SIM card to its customers. MVNOs first appeared in Denmark, Hong Kong, Finland and the UK and today exist in over 50 countries including most of Europe, USA and Canada, and Australia and parts of Asia and account for approximately 10% of all mobile phone subscribers around the world.
On some networks the mobile phone is locked to its SIM card such as on the GSM networks in the USA. This tends to happen only in countries where mobile phones are heavily subsidised, but even then not all countries and not all operators; such as in the UK typically most phones with subsidies are not SIM-locked. In countries where the phones are not subsidised, such as Italy and Belgium, all phones are unlocked. Where the phone is not locked to its SIM card, the users can easily switch networks by simply replacing the SIM card of one network with that of another while using only one phone. This is typical for example among young users who may want to optimise their telecoms traffic by different tariffs to different friends on different networks. It is called the "SIM card switch"

Operating systems
SIM operating systems come in two main types: Native and Java Card. Native SIMs are based on proprietary, vendor specific software whereas the Java Card SIMs are based on standards, particularly
Java Card which is a subset of the Java programming language specifically embedded devices. Java Card allows the SIM to contain programs that are hardware independent and interoperable.
Data
SIM cards store network specific information used to authenticate and identify subscribers on the Network, the most important of these are the
ICCID, IMSI, Authentication Key (Ki), Local Area Identity (LAI) and Operator-Specific Emergency Number. The SIM also stores other carrier specific data such as the SMSC (Short Message Service Center) number, Service Provider Name (SPN), Service Dialing Numbers (SDN), Advice-Of-Charge parameters and Value Added Service (VAS) applications. (look to GSM 11.11)

ICCID
Each SIM is Internationally identified by its
ICC-ID (Integrated Circuit Card ID). ICCIDs are stored in the SIM cards and are also engraved or printed on the SIM card body during a process called personalization. The ICCID is defined by the ITU-T recommendation E.118. The number is up to 18 digits long and in addition is often associated with a single check digit calculated using the Luhn algorithm.
IMSI
SIM cards are identified on their individual operator networks by holding a unique
International Mobile Subscriber Identity. Mobile operators connect mobile phone calls and communicate with their market SIM cards using their IMSI.
Authentication key (Ki)
The Ki is a 128-bit value used in authenticating the SIMs on the mobile network. Each SIM holds a unique Ki assigned to it by the operator during the personalization process. The Ki is also stored on a database (known as
Authentication Center or AuC) on the carrier’s network.
The SIM card is designed not to allow the Ki to be obtained using the smart-card interface. Instead, the SIM card provides a function, "RUN GSM ALGORITHM", that allows the phone to pass data to the SIM card to be signed with the Ki. This, by design, makes usage of the SIM card mandatory unless the Ki can be extracted from the SIM card, or the carrier is willing to reveal the Ki. In practice, the GSM "crypto" algorithm for computing SRES_2 (see step 4, below) from the Ki has certain vulnerabilities which can allow the extraction of the Ki from a SIM card and the making of a
duplicate SIM card.
Authentication process
When the Mobile Equipment starts up, it obtains the IMSI from the SIM card, and passes this to the mobile operator requesting access and authentication. The Mobile Equipment may have to pass a PIN to the SIM card before the SIM card will reveal this information.
The operator network searches its database for the incoming IMSI and its associated Ki.
The operator network then generates a Random Number (RAND) and signs it with the Ki associated with the IMSI (and stored on the SIM card), computing another number known as Signed Response (SRES_1).
The operator network then sends the RAND to the Mobile Equipment, which passes it to the SIM card. The SIM card signs it with its Ki, producing SRES_2 which it gives to the Mobile Equipment along with encryption key Kc. The Mobile Equipment passes SRES_2 on to the operator network.
The operator network then compares its computed SRES_1 with the computed SRES_2 that the Mobile Equipment returned. If the two numbers match the SIM is authenticated and the Mobile Equipment is granted access to the operator's network. Kc is used to encrypt all further communications between the Mobile Equipment and the network.
Location area identity
The SIM stores network state information, which is received from the
Location Area Identity (LAI). Operator networks are divided into Location Areas, each having a unique LAI number. When the device changes locations, it stores the new LAI to the SIM and sends it back to the operator network with its new location. If the device is power cycled, it will take data off the SIM, and search for the previous LAI. This saves time by avoiding having to search the whole list of frequencies that the telephone normally would.
SMS messages and contacts
Most SIM cards will orthogonally store a number of SMS messages and phonebook contacts. The contacts stored are in simple 'Name and number' pairs - entries containing multiple phone numbers and additional phone numbers will usually not be stored on the SIM card. When a user tries to copy such entries to a SIM the handset's software will break them up into multiple entries, discarding any information that isn't a phone number. The number of contacts and messages stored depends on the SIM; early models would store as little as 5 messages and 20 contacts while modern SIM cards can usually store over 250 contacts.
SIM digits
A typical SIM (19 digits) example 89 92 10 1200 00 320451 0, provide several details as follows:
The first two digits (89 in the example) refers to the Telecom Id.
The next two digits (92 in the example) refers to the country code (92-
Pakistan).
The next two digits (10 in the example) refers to the network code.
The next four digits (1200 in the example) refers to the month and year of manufacturing.
The next two digits (00 in the example) refers to the switch configuration code.
The next six digits (320451 in the example) refers to the SIM number.
The last digit which is separated from the rest is called the
check digit.


Japan
Japan's PDC system also specifies a SIM, but this has never been implemented commercially. The specification of the interface between the Mobile Equipment and the SIM is given in the RCR STD-27 annex 4. The Subscriber Identity Module Expert Group was a committee of specialists assembled by the European Telecommunications Standards Institute (ETSI) to draw up the specifications (GSM 11.11) for interfacing between smart cards and mobile telephones. In 1994, the name SIMEG was changed to SMG9.
FinlandA
In July
2005, the Finnish government announced that a Citizen Certificate - a government-guaranteed 'electronic identity' included in a SIM card - would be made available to every individual resident in Finland before the end of 2005, allowing mobile phone users to access e-services on the move. The Citizen Certificate has been described as "basically an e-ID card that will be compatible with several hardware devices, such as mobile phones, PDAs, personal computers, digital TV sets, and public web kiosks". It is based on open standards and secured Public Key Infrastructure.
Conclusion
However most SIM cards are supplied as a full-sized card with the smaller card held in place by a few plastic links and can be easily broken off to be used in a phone that uses the smaller SIM.

COMPUTER HARDWARE



COMPUTER HARDWARE
RAMESH.K
DEPARTMENT OF INFORMATION TECHNOLOGY
GOVERNMENT COLLEGE OF TECHNOLOGY
ANNA UNIVERSITY,COIMBATORE-13.
rameshkmlvkrr@gmail.com

1.ABSTRACT:
Computer hardware is the physical part of a
computer, including its digital circuitry, as distinguished from the computer software that executes within the hardware. The hardware of a computer is infrequently changed, in comparison with software and hardware data, which are "soft" in the sense that they are readily created, modified or erased on the computer. Firmware is a special type of software that rarely, if ever, needs to be changed and so is stored on hardware devices such as read-only memory (ROM) where it is not readily changed (and is, therefore, "firm" rather than just "soft").
2.INTRODUCTION:
It is in
embedded systems in automobiles, microwave ovens, electrocardiograph machines, compact disc players, and other devices. Personal computers, the computer hardware familiar to most people, form only a small minority of computers (about 0.2% of all new computers produced in 2003). See Market statistics.
3.COMPUTER HARDWARE:
3.1 POWER SUPPLY;
A case control, and (usually) a cooling fan, and supplies power to run the rest of the computer, the most common types of power supplies are AT and BabyAT (old) but the standard for PCs actually are ATX and Micro ATX.
3.1.1 PSU:
A power supply unit (PSU) is the component that supplies power to a computer. More specifically, a power supply is typically designed to convert 100-120
V (North America and Japan) or 220-240 V (Europe, Africa, Asia and Australia) AC power from the mains to usable low-voltage DC power for the internal components of the computer. Some power supplies have a switch to change between 230 V and 115 V.
3.1.2 Power rating:
Computer power supplies are rated based on their maximum output power. Typical power ranges are from 300
W to 500 W (lower than 300 W for Small form factor systems). Power supplies used by gamers and enthusiasts sometimes range from 500 W to 1000 W, with the highest end units going up to 2 kW for servers and extreme performance computers with multiple processors, several hard disks and multiple graphics cards (ATI CrossFire or NVIDIA SLI).
3.1.3 Appearance:

3.1.3.1 External:
Most computer power supplies have the appearance of a square metal box, and have a large bundle of wires emerging from one end. Opposite the wire bundle is the back face of the power supply, with an air vent and C14
IEC connector to supply AC power. There may optionally be a power switch and/or a voltage selector switch. A label on one side of the box lists technical information about the power supply, including safety certifications maximum output wattage. Common certification marks for safety are the UL mark, GS mark, TÜV, NEMKO, SEMKO, DEMKO, FIMKO, CCC, CSA, VDE, GOST R and BSMI. Common certificate marks for EMI/RFI are the CE mark, FCC and C-tick. The CE mark is required for power supplies sold in Europe and India.
3.1.3.2 Connectors:
· PC Main power connector (usually called P1): Is the connector that goes to the
motherboard to provide it with power. The connector has 20 or 24 pins. One of the pins belongs to the PS-ON wire mentioned above (it is usually green). This connector is the largest of all the connectors. In older AT power supplies, this connector was split in two: P8 and P9. If you have a power supply with 24-pin connector, you can plug it into a motherboard with a 20-pin connector. In cases where the motherboard has a 24-pin connector, some power supplies come with two connectors (one with 20-pin and other with 4-pin) which can be used together to form the 24-pin connector.
ATX12V 4-pin power connector (also called the P4 power connector). A second connector that goes to the motherboard (in addition to the main 24-pin connector). This connector is found on recent motherboards.
4-pin Peripheral power connectors (usually called
Molex for its manufacturer): These are the other, smaller connectors that go to the various disk drives of the computer. Most of them have four wires: two black, one red, and one yellow. Unlike the standard mains electrical wire color-coding, each black wire is a ground, the red wire is +5 V, and the yellow wire is +12 V. In some cases these are also used to provide additional power to PCI cards such as Firewire 800 cards.
4-pin
Berg power connectors (usually called Mini-connector): This is one of the smallest connectors that supplies the floppy drive with power. In some cases, it can be used as an auxiliary connector for AGP video cards. Its cable configuration is similar to the Peripheral connector.
3.1.3.3 Internal:
Inside the computer power supply is a complex arrangement of electrical components, including
diodes, capacitors, transistors and transformers. Also, most computer power supplies have metal heat sinks and fans to dissipate the heat produced. The speed of the fan is often dependent on the temperature, or less often the power load. However, for most PSUs this can be fixed by unplugging the PSU and then pressing the power-on button, which will drain the capacitors. Still, care should be taken as some PSUs require a load on the output in order to discharge the capacitors fully. Even when the PC is turned off, a PSU will draw some power from the electrical outlet, most of it going to power the +5 VSB (standby voltage) rail.
3.3.4 AT vs. ATX:
There are two basic differences between
AT and ATX power supplies: The connectors that provide power to the motherboard, and the soft switch. On older AT power supplies, the Power-on switch wire from the front of the computer is connected directly to the power supply. On newer ATX power supplies, the switch goes to the motherboard, allowing other hardware or software to turn the system on or off. AT Means Advanced technology ATX Means Advanced Technology Extended
3.2 SMPS:
switching-mode power supply or SMPS, is an electronic
power supply unit (PSU) that incorporates a switching regulator. While a linear regulator maintains the desired output voltage by dissipating excess power in a "pass" power transistor, the SMPS rapidly switches a power transistor between saturation (full on) and cutoff (completely off) with a variable duty cycle whose average is the desired output voltage.
3.2.1 TYPES:
AC in, DC out: rectifier, off-line converter input stage.
DC in, DC out: voltage converter, or current converter, or DC to DC converter
AC in, AC out: frequency changer, cycloconverter
DC in, AC out: inverter
3.2.2 WORKING OF SMPS:
3.2.2.1 Input rectifier stage:
If the SMPS has an AC input, then the first stage is to convert the input to DC. This is called
rectification. The rectifier circuit can be configured as a voltage doubler by the addition of a switch operated either manually or automatically. This is a feature of larger supplies to permit operation from nominally 120 volt or 240 volt supplies. The rectifier produces an unregulated DC voltage which is then sent to a large filter capacitor. The current drawn from the mains supply by this rectifier circuit occurs in short pulses around the AC voltage peaks. These pulses have significant high frequency energy which reduces the power factor. Special control techniques can be employed by the following SMPS to force the average input current to follow the sinusoidal shape of the AC input voltage thus the designer should try correcting the power factor. A SMPS with a DC input does not require this stage. An SMPS designed for AC input can often be run from a DC supply (for 230V AC this would be 330V DC), as the DC passes through the rectifier stage unchanged. It's however advisable to consult the manual before trying this, though most supplies are quite capable of such operation even though nothing is mentioned in the documentation. However, this type of use may be harmful to the rectifier stage as it will only utilize half of diodes in the rectifier for the full load. This may result in overheating of these components, and make them fail as shortcircuits. [2]
3.2.2.2 Inverter stage:
The inverter stage converts DC, whether directly from the input or from the rectifier stage described above, to AC by running it through a power oscillator, whose output transformer is very small with few windings at a frequency of tens or hundreds of
kilohertz (kHz). The frequency is usually chosen to be above 20 kHz, to make it inaudible to humans. The output voltage is optically coupled to the input and thus very tightly controlled. The switching is implemented as a multistage (to achieve high gain) MOSFET amplifier. MOSFETs are a type of transistor with a low on-resistance and a high current-handling capacity. Since only the last stage has a large duty cycle, previous stages can be implemented by bipolar transistors leading to roughly the same efficiency. The second last stage needs to be of a complementary design, where one transistor charges the last Mosfet and another one discharges the Mosfet. A design using a resistor would run idle most of the time and reduce efficiency.
Voltage converter and output rectifier:
If the output is required to be isolated from the input, as is usually the case in mains power supplies, the inverted AC is used to drive the primary winding of a high-frequency
transformer. This converts the voltage up or down to the required output level on its secondary winding. The output transformer in the block diagram serves this purpose.
If a DC output is required, the AC output from the transformer is rectified. For output voltages above ten volts or so, ordinary silicon diodes are commonly used. For lower voltages,
Schottky diodes are commonly used as the rectifier elements; they have the advantages of faster recovery times than silicon diodes (allowing low-loss operation at higher frequencies) and a lower voltage drop when conducting. For even lower output voltages, MOSFETs may be used as synchronous rectifiers; compared to Schottky diodes, these have even lower "on"-state voltage drops.
The rectified output is then smoothed by a filter consisting of
inductors and capacitors. For higher switching frequencies, components with lower capacitance and inductance are needed.

3.3 MOTHER BOARD;
A motherboard is the central or primary
printed circuit board (PCB) making up a complex electronic system, such as a modern computer. It is also known as a mainboard, baseboard, system board, planar board, or, on Apple computers, a logic board, and is sometimes abbreviated casually as mobo.[1]
3.3.1 Components and functions
The motherboard of a typical desktop consists of a large
printed circuit board. It holds electronic components and interconnects, as well as physical connectors (sockets, slots, and headers) into which other computer components may be inserted or attached.
Most motherboards include, at a minimum:
sockets (or slots) in which one or more microprocessors (CPUs) are installed[4]
slots into which the system's main memory is installed (typically in the form of
DIMM modules containing DRAM chips)
a
chipset which forms an interface between the CPU's front-side bus, main memory, and peripheral buses
non-volatile memory chips (usually Flash ROM in modern motherboards) containing the system's firmware or BIOS
a
clock generator which produces the system clock signal to synchronize the various components
slots for expansion cards (these interface to the system via the buses supported by the chipset)
power connectors and circuits, which receive electrical power from the
computer power supply and distribute it to the CPU, chipset, main memory, and expansion cards.[5]
3.3.2 Integrated peripherals
With the steadily declining costs and size of
integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
integrated ATI Radeon graphics controller supporting 2D and 3D graphics, with VGA and TV output
integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
fast Ethernet network controller for 10/100 Mbit networking
USB 2.0 controller supporting up to 12 USB ports
3.3.3 Form factors
Motherboards are produced in a variety of sizes and shapes ("
form factors"), some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible commodity computers have been standardized to fit various case sizes. As of 2007, most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers which have not traditionally been built from commodity components.
3.4 MICROPROCESSOR:
A microprocessor incorporates most or all of the functions of a
central processing unit (CPU) on a single integrated circuit (IC). The first microprocessors emerged in the early 1970s and were used for electronic calculators, using BCD arithmetics on 4-bit words. Other embedded uses of 4 and 8-bit microprocessors, such as terminals, printers, various kinds of automation etc, followed rather quickly. Affordable 8-bit microprocessors with 16-bit addressing also led to the first general purpose microcomputers in the mid-1970s.
3.4.1 History:
· Notable 8-bit designs:
The 4004 was later followed in 1972 by the
8008, the world's first 8-bit microprocessor. These processors are the precursors to the very successful Intel 8080 (1974), Zilog Z80 (1976), and derivative Intel 8-bit processors. The competing Motorola 6800 was released August 1974. Its architecture was cloned and improved in the MOS Technology 6502 in 1975, rivaling the Z80 in popularity during the 1980s.
· 16-bit designs:
The first single-chip 16-bit microprocessor was TI's
TMS 9900, which was also compatible with their TI-990 line of minicomputers. The 9900 was used in the TI 990/4 minicomputer, the TI-99/4A home computer, and the TM990 line of OEM microcomputer boards. The chip was packaged in a large ceramic 64-pin DIP package, while most 8-bit microprocessors such as the Intel 8080 used the more common, smaller, and less expensive plastic 40-pin DIP. A follow-on chip, the TMS 9980, was designed to compete with the Intel 8080, had the full TI 990 16-bit instruction set, used a plastic 40-pin package, moved data 8 bits at a time, but could only address 16 KB. A third chip, the TMS 9995, was a new design. The family later expanded to include the 99105 and 99110.
· 32-bit designs:
The most significant of the 32-bit designs is the
MC68000, introduced in 1979. The 68K, as it was widely known, had 32-bit registers but used 16-bit internal data paths, and a 16-bit external data bus to reduce pin count, and supported only 24-bit addresses. Motorola generally described it as a 16-bit processor, though it clearly has 32-bit architecture. The combination of high speed, large (16 megabytes (2^24)) memory space and fairly low costs made it the most popular CPU design of its class. The Apple Lisa and Macintosh designs made use of the 68000, as did a host of other designs in the mid-1980s, including the Atari ST and Commodore Amiga.
· Multicore designs:
A different approach to improving a computer's performance is to add extra processors, as in
symmetric multiprocessing designs which have been popular in servers and workstations since the early 1990s. Keeping up with Moore's Law is becoming increasingly challenging as chip-making technologies approach the physical limits of the technology.
A multi-core processor is simply a single chip containing more than one microprocessor core, effectively multiplying the potential performance with the number of cores (as long as the operating system and software is designed to take advantage of more than one processor). Some components, such as bus interface and second level cache, may be shared between cores. Because the cores are physically very close they interface at much faster clock speeds compared to discrete multiprocessor systems, improving overall system performance.
· RISC:
The first commercial design was released by
MIPS Technologies, the 32-bit R2000 (the R1000 was not released). The R3000 made the design truly practical, and the R4000 introduced the world's first 64-bit design. Competing projects would result in the IBM POWER and Sun SPARC systems, respectively. Soon every major vendor was releasing a RISC design, including the AT&T CRISP, AMD 29000, Intel i860 and Intel i960, Motorola 88000, DEC Alpha and the HP-PA.

3.5 RANDOM AXCESS MEMORY(RAM):
Random access memory (usually known by its
acronym, RAM) is a type of computer data storage. Today it takes the form of integrated circuits that allow the stored data to be accessed in any order, i.e. at random. The word random thus refers to the fact that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.[1]
The word RAM is mostly associated with volatile types of memory (such as DRAM memory modules), where the information is lost after the power is switched off. However, many other types of memory are RAM as well (i.e. Random Access Memory), including most types of ROM and a kind of flash memory called NOR-Flash.
3.5.1 Types of RAM
Modern types of writable RAM generally store a bit of data in either the state of a
flip-flop, as in SRAM (static RAM), or as a charge in a capacitor (or transistor gate), as in DRAM (dynamic RAM), EPROM, EEPROM and Flash. Some types have circuitry to detect and/or correct random faults called memory errors in the stored data, using parity bits or error correction codes. RAM of the read-only type, ROM, instead uses a metal mask to permanently enable/disable selected transistors, instead of storing a charge in them.
As both SRAM and DRAM are volatile, other forms of computer storage, such as
disks and magnetic tapes, have been used as "permanent" storage in traditional computers. Many newer products instead rely on flash memory to maintain data between sessions of use: examples include PDAs, small music players, mobile phones, synthesizers, advanced calculators, industrial instrumentaion and robotics, and many other types of products; even certain categories of personal computers, such as the OLPC XO-1, Asus Eee PC, and others, have begun replacing magnetic disk with so called flash drives (similar to fast memory cards equipped with an IDE or SATA interface).
3.5.2 Memory hierarchy:
Many computer systems have a memory hierarchy consisting of
CPU registers, on-die SRAM caches, external caches, DRAM, paging systems, and virtual memory or swap space on a hard drive. This entire pool of memory may be referred to as "RAM" by many developers, even though the various subsystems can have very different access times, violating the original concept behind the random access term in RAM. Even within a hierarchy level such as DRAM, the specific row, column, bank, rank, channel, or interleave organization of the components make the access time variable, although not to the extent that rotating storage media or a tape is variable. (Generally, the memory hierarchy follows the access time with the fast CPU registers at the top and the slow hard drive at the bottom.)
In most modern personal computers, the RAM comes in easily upgraded form of modules called
memory modules or DRAM modules about the size of a few sticks of chewing gum. These can quickly be replaced should they become damaged or too small for current purposes. As suggested above, smaller amounts of RAM (mostly SRAM) are also integrated in the CPU and other ICs on the motherboard, as well as in hard-drives, CD-ROMs, and several other parts of the computer system.
3.5.3 Swapping:
If a computer becomes low on RAM during intensive application cycles, the computer can perform an operation know as "
swapping". When this occurs, the computer temporarily uses hard drive space as additional memory. Constantly relying on this type of backup memory is called thrashing, which is generally undesirable because it lowers overall system performance. In order to reduce the dependency on swapping, more RAM can be installed.
3.6 BUS (COMPUTING):
In
computer architecture, a bus is a subsystem that transfers data between computer components inside a computer or between computers. Unlike a point-to-point connection, a bus can logically connect several peripherals over the same set of wires. Each bus defines its set of connectors to physically plug devices, cards or cables together.
Early computer buses were literally parallel
electrical buses with multiple connections, but the term is now used for any physical arrangement that provides the same logical functionality as a parallel electrical bus. Modern computer buses can use both parallel and bit-serial connections, and can be wired in either a multidrop (electrical parallel) or daisy chain topology, or connected by switched hubs, as in the case of USB.
3.6.1 Description of a bus:
At one time, "bus" meant an electrically parallel system, with electrical conductors similar or identical to the pins on the CPU. This is no longer the case, and modern systems are blurring the lines between buses and networks.
Most computers have both internal and external buses. An internal bus connects all the internal components of a computer to the motherboard (and thus, the
CPU and internal memory). These types of buses are also referred to as a local bus, because they are intended to connect to local devices, not to those in other machines or external to the computer. An external bus connects external peripherals to the motherboard.
Network connections such as Ethernet are not generally regarded as buses, although the difference is largely conceptual rather than practical. The arrival of technologies such as InfiniBand and HyperTransport is further blurring the boundaries between networks and buses. Even the lines between internal and external are sometimes fuzzy, I²C can be used as both an internal bus, or an external bus (where it is known as ACCESS.bus), and InfiniBand is intended to replace both internal buses like PCI as well as external ones like Fibre Channel.
3.6.2 Examples of internal computer buses:
Parallel:
ASUS Media Bus proprietary, used on some ASUS Socket 7 motherboards
CAMAC for instrumentation systems
Extended ISA or EISA
Industry Standard Architecture or ISA
Low Pin Count or LPC
MicroChannel or MCA
MBus
Multibus for industrial systems
NuBus or IEEE 1196
OPTi local bus used on early Intel 80486 motherboards.
Peripheral Component Interconnect or PCI
S-100 bus or IEEE 696, used in the Altair and similar microcomputers
SBus or IEEE 1496
VESA Local Bus or VLB or VL-bus
VMEbus, the VERSAmodule Eurocard bus
STD Bus for 8- and 16-bit microprocessor systems
Serial:
1-Wire
HyperTransport
I²C
PCI Express or PCIe
Serial Peripheral Interface Bus or SPI bus
FireWire i.Link or IEEE 1394
3.6.3 Examples of external computer buses:
Parallel:
Advanced Technology Attachment or ATA (aka PATA, IDE, EIDE, ATAPI, etc.) disk/tape peripheral attachment bus(the original ATA is parallel, but see also the recent serial ATA)
HIPPI HIgh Performance Parallel Interface
IEEE-488 (aka GPIB, General-Purpose Instrumentation Bus, and HPIB, Hewlett-Packard Instrumentation Bus)
PC card, previously known as PCMCIA, much used in laptop computers and other portables, but fading with the introduction of USB and built-in network and modem connections
SCSI Small Computer System Interface, disk/tape peripheral attachment bus
Serial:
USB Universal Serial Bus, used for a variety of external devices
Serial Attached SCSI and other serial SCSI buses
serial ATA
Controller Area Network ("CAN bus")
EIA-485
FireWire
Examples of internal/external computer buses:
Futurebus
InfiniBand
QuickRing
SCI
3.7 OTHER PERTIPHERLS:
In addition, hardware devices can include external components of a computer system. The following are either standard or very common.
Includes various
input and output devices, usually external to the computer system
3.7.1 Input:
Text input devices
Keyboard - a device, to input text and characters by depressing buttons (referred to as keys), similar to a typewriter. The most common English-language key layout is the QWERTY layout.
Pointing devices
Mouse - a pointing device that detects two dimensional motion relative to its supporting surface.
Image, Video input devices
Image scanner - a device that provides input by analyzing images, printed text, handwriting, or an object.
Webcam - a low resolution video camera used to provide visual input that can be easily transferred over the internet.
Audio input devices
Microphone - an acoustic sensor that provides input by converting sound into an electrical signals
3.7.2 Output:
Image, Video output devices
Printer
Monitor
Audio output devices
Speakers
Headset